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Abstract. The splitting behaviour of the 2p 2P3/2 hyperfine structure levels is investigated in 6Li for
homogeneous crossed electric and magnetic fields (Stark-Zeeman effect). This is done by diagonalizing the
perturbation matrix comprising the hyperfine interaction, the electronic and nuclear magnetic interaction
and the effective electric interaction obtained by transforming the quadratic Stark effect to a first order
perturbation interaction. Symmetries are used to find analytic formulae for level shifts and crossing points if
only one external field is present. A reflection symmetry unbroken with all three interactions present permits
the decomposition of the 12 × 12 matrix into two 6 × 6 submatrices. The structure of energy eigenvalue
surfaces εF,MF (B,E) of the two subsystems is found by numeric diagonalization of the perturbation matrix
and is displayed in the ranges |B| < 1 mT, |E| < 300 kV/cm. The total angular momentum F = J + I
(J = 3/2, electronic angular momentum, I = 1, nuclear spin) and the magnetic quantum number MF

provide labels for all surfaces. All crossing points of the energy surfaces have been found. Adiabatic level
transfer occurring in atoms traversing a sequence of crossed magnetic and electric fields is explained. Berry
phases occur for cycles around some crossing points. Their presence or absence is explained.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 32.60.+i Zeeman and Stark effects – 32.80.Bx
Level crossing and optical pumping – 31.50.Gh Surface crossings, non-adiabatic couplings

1 Introduction

In the past efforts have been made to investigate the
Stark-Zeeman effect of the np 2P3/2-levels of the alka-
lines, both experimentally by means of laser-atomic-beam
spectroscopy in parallel and in crossed fields, and compu-
tationally by means of a program which determined the
splitting of the hyperfine components of the spectral lines
considered, and their expected relative transition proba-
bilities [1–8]. The computed data were compared with the
experimental spectra with the help of fitting procedures,
resulting in the determination of atomic parameters, like
the hyperfine structure constants, and/or polarizabilities.
This same program was used in the laserspectroscopic
study of the lithium and the sodium D-lines in strong
magnetic fields up to 1 T [9,10], i.e. strong enough to ob-
serve the influence of the fine structure levels J = 1/2 and
J = 3/2 of the excited term 2P on each other. As a subse-
quent step, the computation of the splitting of the hyper-
fine states MF of an atom influenced by crossed electric
and magnetic fields showed that, adiabatically changing
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the presence and the strength of these fields according to
a well defined cycle, atoms populated in a given hyperfine
level Fi before the start of the field cycle were found in
another level Ff after experiencing the field cycle [5,7,8].
This kind of level transfer, explainable as the consequence
of the presence of level crossings and anticrossings, was
experimentally proved in a laserspectroscopic experiment
on a beam of gallium atoms, by successfully probing the
population of the levels involved [12]. However, these con-
siderations for energy levels with the electronic angular
momentum J = 3/2 have so far been limited to atoms with
nuclear spin I = 3/2 as 23Na, 69Ga, 71Ga [13] or 7Li [14].
For this reason, similar investigations have been performed
for 6Li, which has an integer nuclear spin, I = 1, in order
to find differences and similarities.

These have been performed by diagonalizing the per-
turbation matrix comprising the following three interac-
tions (see Sect. 2): (1) the hyperfine interaction between
the valence electron and the nucleus; (2) the interaction
of the electronic and nuclear magnetic moments with the
constant external magnetic field; (3) the effective electric
interaction of the valence electron with the constant exter-
nal electric field, developed by Schmieder [15,16], in which
the quadratic Stark effect is represented by an equivalent



188 The European Physical Journal D

operator fitting the framework of first order perturba-
tion theory. Basic theory gives the analytic form of these
operators, their strengths being fixed by experimentally
accessible atomic parameters. In the case of (1) these are
the diagonal hyperfine structure constants A1 and A2, in
case of (2) the electronic and nuclear gyromagnetic ratios
gJ and ĝI , and in the case of (3) the scalar and tensor po-
larizabilities α0 and α2. In the following all the expressions
for the matrix elements of these operators needed for the
calculations are given and discussed as well as their sym-
metry properties. The eigenvalues are only approximate,
since only the subspace belonging to the 2p 2P3/2 level
is used. The nearest level is the other fine structure level,
2p 2P1/2, whose energy is 10050 MHz lower [17]. The mag-
nitude of this fine structure splitting is much larger than
the hyperfine shifts considered here. An analysis where
this state is included has been performed for 7Li in [14]
and will be published elsewhere. The corrections to the
field values and energies of the crossing points do not ex-
ceed 17%. Additional corrections may come from changes
of the experimental values of the atomic constants dis-
cussed above and listed in Table 1. But all such correc-
tions will change our results only quantitatively, but not
qualitatively.

For perpendicular external fields, the only unbroken
symmetry is a reflection at a plane perpendicular to the
magnetic field B and parallel to the electric field E (see
Sect. 3); it permits one to decompose the 12-dimensional
function space into two orthogonal 6-dimensional sub-
spaces, which we call the positive and the negative sub-
system. The positive subsystem is characterized by the
magnetic quantum numbers MF = 5/2, 1/2,−3/2; the
negative subsystem by MF = −5/2,−1/2, 3/2. The corre-
sponding two characteristic polynomials can be further
decomposed if one of the external fields is zero. In ei-
ther case, each of the polynomials separates into three
polynomials, which are linear, quadratic and cubic in ei-
ther B or E2. The corresponding eigenvalues of the first
and the second factor are given as analytic expressions
in Section 4. The crossing points, which are very impor-
tant for the topology of the level subsystem, the adiabatic
level transfer and the geometric phases, are found from
the resultants of these polynomials (see Sect. 4). There
are 7 crossing points in each subsystem in the domain
|B| < 1 mT, 0 < E < 300 kV/cm of the B, E-plane. In
case of a pure magnetic field, each subsystem possesses
5 crossing points. In case of a pure electric field there is
one crossing point. An additional crossing point has both
fields different from zero.

There is a qualitative difference between the systems
with nuclear spin I = 3/2 leading to an integer total an-
gular momentum F [8,13] and the present system with
I = 1 leading to a half odd integer F . Both systems de-
compose into two non-interacting subsystems due to the
fact that the interaction mixes only those states MF dif-
fering by ∆MF = 0,±2, enabling one to catalogue them
as the odd subsystem (MF = odd) and the even subsys-
tem (MF = even) for I = 3/2 (and presumably for other
one electron systems having a nucleus with half odd inte-

ger spin) and the positive and the negative subsystem for
I = 1. The positive and the negative subsystem are very
similar [14], whereas the odd and the even system exhibit
several qualitative differences [7,8,13].

In the general case where both fields are nonzero, the
energy eigenvalues εF,MF (B, E) are found by numerical di-
agonalization of the perturbation matrix. The correspond-
ing surfaces above the (B, E)-plane are plotted. The in-
sight taken from these pictures leads to an understanding
of the adiabatic level transfer (see Sect. 7). In a single
increasing external field the phase point describing the
state of the atom passes from one energy surface to an-
other one through the crossing points (crossing); when this
field decreases in the presence of a second field the gap
now separating the two surfaces detains the phase point
from returning to the original surface (anticrossing). The
knowledge of the crossing points permits one to predict all
types of behaviour of an atom in such a sequence of fields.

A crossing requires the coincidence of two eigenvalues
of the Hamiltonian. In a seminal paper [18] v. Neumann
and Wigner proved the following rules: a real symmetric
matrix (as is the Hamiltonian considered here), whose el-
ements depend on a number of parameters α1, α2, . . . , αn,
has a double eigenvalue if n, the number of parameters,
is at least 2. This entails: terms belonging to the same ir-
reducible representation of the unbroken symmetry do not
cross under the influence of a one-parameter perturbation.
Haake [19] gives an extensive and thorough discussion of
the time-reversal operator, T , as well as the connections
between this and other symmetry operations and degen-
eracies. In our case T 2 = − 1, since total angular momen-
tum is a half odd integer. Haake’s [19] results will be used
below in several applications.

When there is a crossing of levels one is wondering
whether Berry (or geometrical) phases occur in field cy-
cles enclosing the crossing points. Such phases are in-
deed found, but only for some of the crossing points (see
Sect. 8). The absence or presence of such phase changes is
correlated with the structure of the energy surfaces at the
crossing points. When the Taylor series of the εF,MF (B, E)
around a given crossing point are linear in both B and E,
then a Berry phase occurs. The quadratic Stark effect in-
troduces a quadratic dependence of εF,MF (B, E) on E for
the magnetic crossing points, Bp1, . . . , Bp5, Bn1, . . . Bn5,
shown in Figures 1, 7 and 8, thereby preventing such a
phase for the corresponding field cycles.

2 The perturbation operators

In this investigation the function space is limited to the
wave functions belonging to the 2p 2P3/2 fine structure
level of 6Li. The nuclear spin and the total electronic an-
gular momentum are I = 1 and J = 3/2. These angular
momenta are assumed to remain good quantum numbers.
Their coupling gives the total angular momentum, char-
acterized by quantum numbers F = 5/2, 3/2, 1/2. So the
degeneracy of the unperturbed system, which is also the
dimension of our function space, is 12. The theory has
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Table 1. Experimental values of atomic constants in 6Li:
a, b = hyperfine structure constants, α0, α2 scalar, tensorial po-
larizability, gJ = 2p 2P 3

2
Landé factor, ĝI = nuclear g-factor

(Bohr magnetons).

Symbol Value Ref.

a [MHz] −1.155, [27]

b [MHz] −0.1 [27]

α0

[
MHz/(kV/cm)2

]
0.03163 [28]

α2

[
MHz/(kV/cm)2

]
4.06 × 10−4 [28]

gJ 1.335 [29]

ĝI 4.47654 × 10−4 [29]

been collected and discussed in [1] or [14]. The matrix
elements of the perturbation operators are evaluated by
the Wigner-Eckhart theorem, choosing the coupled wave-
functions |γIγJIJFMF 〉 as a basis. The radial part of the
interaction is the same for all matrix elements and is ab-
sorbed into the atomic parameters (hyperfine structure
constants, polarizabilities) or drops out as the magnetic
interactions do not depend on the radius in our approx-
imation. Since the quantum numbers I and J are con-
stant within the subspace under study, they are omitted
in the following. By diagonalizing the sum of the pertur-
bation operators (= hyperfine structure operator + mag-
netic interaction operator + effective electric interaction
operator) within this subspace of the total Hilbert space,
one obtains the energy eigenvalues and the correspond-
ing eigenvectors of the different levels. These eigenvalues
give the energy shifts with respect to the energy of the
unperturbed state, which is put to zero by definition. The
units of the experimentally accessible atomic parameters
(see Tab. 1) are such that the eigenvalues (εn and ε′n) are
given in frequency units, i.e. in the present case in MHz.
The degeneracies are totally removed (or partially in the
case of the common influence of the hyperfine and the
Stark interactions; this is explained in more detail below).
In the following, the three perturbation operators are de-
scribed separately.

2.1 Hyperfine structure interaction

The Hamiltonian of the hyperfine interaction can in gen-
eral be written as a sum of scalar products of spherical
tensor operators of the form

Hh =
∑

k>0

(
T(k) · M(k)

)
. (1)

In equation (1) the operator T(k) contains only the elec-
tronic, the operator M(k) the nuclear degrees of freedom.
All the nuclear momenta are regarded as given constants.
Terms with even k represent the electric interaction, terms
with odd k the magnetic interaction. It is sufficient to limit
the sum to k ≤ 2; the influence of the higher multipoles
(k ≥ 3) is assumed to be negligibly small. k = 0 is ex-
cluded, as this interaction between the electric field of a

point nucleus surrounded by closed electron shells and the
valence electron is already contained in the unperturbed
Hamiltonian; so is the magnetic dipolar interaction be-
tween the orbital and the spin angular momentum of the
valence electron (fine structure). The k = 1 term in equa-
tion (1) contains the magnetic interaction between the
electronic (orbital and spin) and the nuclear magnetic mo-
ments as well as the contact term describing the polariza-
tion of the nucleus by the valence electron. The k = 2 term
takes into account the electric interaction between the nu-
clear and electronic quadrupole distributions. The use of
the Wigner-Eckhart theorem and Racah-algebra leads to
matrix elements of the form

〈γIγJIJFMF |Hh|γIγJIJF ′M ′
F 〉 =

∑

k>0

(−1)I+J+F

{
J I F

I J k

}
hAk(

J k J

−J 0 J

) (
I k I

−I 0 I

) . (2)

The atomic parameters Ak are the so-called diagonal hy-
perfine structure constants. The matrix elements are non-
zero only if both F = F ′ and MF = M ′

F .

2.2 Magnetic interaction

The Hamiltonian of the interaction with the constant, ex-
ternal magnetic field B aligned with the z-axis is given
by the energy of the atomic and nuclear magnetic dipole
moments in that field:

Hm = − (µJ + µI)B = (gJJz − ĝIIz)µBBz. (3)

Here µB is the Bohr magneton, gJ and ĝI = gI me/mp

are the electronic and nuclear gyromagnetic ratios. These
atomic parameters are taken from experiment. In the same
basis as above the matrix elements become

〈IJFMF |Hm|IJF ′M ′
F 〉 =

µBBz(−1)F−MF

(
F 1 F ′

−MF 0 M ′
F

) √
(2F + 1)(2F ′ + 1)

×
[

gJ(−1)I+J+1+F
√

(2J + 1)(J + 1)J
{

J F I

F ′ J 1

}

− ĝI(−1)I+J+1+F ′√
(2I + 1)(I + 1)I

{
I F J

F ′ I 1

}]

. (4)

2.3 Effective electric interaction

In the selected basis the first order matrix elements of the
Hamiltonian describing the interaction with a constant,
external electric field

Hel = e r ·E (5)

are zero (for reasons of parity). In order to treat the sec-
ond order electric interaction still in the framework of
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first order perturbation theory (together with the hyper-
fine structure and the magnetic interaction) it is useful
to define an effective electric operator (which is quadratic
in E). This is described in [15,16]. The matrix elements
of the operator He in the above basis turn out to be

〈IJFMF |He|IJF ′M ′
F 〉 =

− 1
2
α0E

2δFF ′δMF M ′
F
− 1

2
α2E

2QFMF ,F ′M ′
F

(6)

with α0 the scalar polarizability, α2 the tensor polarizabil-
ity and

QFMF ,F ′M ′
F

=
√

15
2

√
(J + 1)(2J + 1)(2J + 3)

J(2J − 1)

√
(2F + 1)(2F ′ + 1)

×
{

F 2 F ′

J I J

} 2∑

q=−2

1∑

µ=−1

1∑

µ′=−1

(
1 2 1
µ −q µ′

)

× (−1)I+J−F ′+F−MF

(
F 2 F ′

MF q −M ′
F

)
nµnµ′ . (7)

nµ = Eµ/E are the spherical components of the unit vec-
tor giving the field direction. In the case of crossed fields,
we take E = Eex, so that n±1 = ∓1/

√
2, n0 = 0. The

exception, where E = Eez, n±1 = 0, n0 = 1 will be noted
explicitly.

3 Fundamental symmetry properties

In the absence of external fields the fundamental rota-
tional invariance of the hyperfine structure operator of
the system leads to the natural degeneracies within the
hyperfine structure levels. The operator of this interac-
tion is also invariant against inversions and reflections. By
applying external magnetic and/or electric fields the sym-
metries of the total perturbation Hamiltonian are reduced
and the degeneracies are (partially or totally) removed.

3.1 Zeeman effect

If the magnetic field is taken to be parallel to the z-axis,
the remaining symmetries of the Hamiltonian Hh + Hm

are

1. rotations around the z-axis;
2. reflections at the plane perpendicular to the z-axis, i.e.

the (x, y)-plane.

The invariance under rotations around the field axis is
obvious. In considering the reflections the spins are dis-
regarded at first. Then the interaction is proportional to
B ·L = B Lz. The symmetry operations act only on the
coordinates and operators of the electrons, therefore, only
on Lz in the interaction term just given. Lz is invariant
against reflections at the (x, y)-plane only. The spin opera-
tors do not contain space or momentum operators, but the

symmetry properties can be taken over. This question is
treated in more detail in [20]. Rotations around a symme-
try axis commute with reflections at a plane perpendicular
to this axis; the symmetry group C∞h is Abelian; the irre-
ducible representations of this group are one-dimensional;
so, in general, the magnetic field removes all degeneracies.

Systems with a homogeneous magnetic field are not in-
variant under conventional time reversal T . Haake [19] in-
troduces a generalization, which he calls non-conventional
time reversal; it is the product of a rotation by π around an
axis perpendicular to the magnetic field (e.g. the x-axis)
times T . The corresponding Hamiltonian commutes with
this operation.

3.2 Stark effect

The electric field is taken to be aligned with the x-axis.
The symmetry operations that leave the Hamiltonian
Hh + He unchanged are:

1. rotations around the x-axis;
2. reflections at planes containing the x-axis, as e.g. the

(x, y)-plane.

The operator, equation (5), is linear with respect to the
coordinate(s) along the electric field direction. This ex-
plains the reflection invariance just listed. The effective
electric field operator, equation (6), is quadratic in this (or
these) parallel coordinate(s). This entails the additional
invariance against reflections at a plane perpendicular to
the field. Say the (y, z)-plane. The generators of rotations
around the symmetry axis and reflections at the plane
through this axis anticommute; the symmetry group C∞v

is non-Abelian; its faithful irreducible representations (be-
longing to a non-zero magnetic quantum number) are two-
dimensional. The corresponding levels are still at least
two-fold degenerate (Kramer’s degeneracy, [19]).

3.3 Perpendicular Stark-Zeeman effect

By applying both fields simultaneously, only the symme-
try operations common to both interactions remain sym-
metries of the system. These are only the reflection at the
(x, y)-plane. It is easy to show that this remaining sym-
metry is responsible for a very important selection rule
(see [8,13,14,20]) for the matrix elements of the total per-
turbation Hamiltonian Hp = Hh + Hm + He:

〈IJFMF |Hp|IJF ′M ′
F 〉 =

{
0 for MF − M ′

F = odd
�= 0 for MF − M ′

F = even
.

(8)
This rule separates the 2p 2P3/2 level system into two
noninteracting subsystems (similarly as in 23Na, 69Ga,
71Ga [8] and 7Li, [14]):

positive subsystem: MF =
{

5
2
,

1
2
, −3

2

}

negative subsystem: MF =
{

3
2
, −1

2
, −5

2

}
.
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The subspace spanned by the six vectors |IJFMF 〉 with
values MF = {5/2, 1/2,−3/2} is called the positive sub-
system. The six vectors MF = {3/2,−1/2,−5/2} are the
basis of the negative subsystem. These names, which are
chosen somewhat arbitrarily, result from the fact that a
division modulo 4 of the numerators of the quantum num-
bers MF gives +1 for the first set and −1 for the second
set. The positive and the negative subsystems in 6Li are
more profoundly interrelated than the odd and even sub-
systems of, for example, 23Na or 7Li [8,13,14]. In fact, the
energy shifts of one subsystems are intimately related to
corresponding shifts of the other subsystem. From the for-
mulae for the matrix elements of the perturbation opera-
tors in the decoupled basis |IJMIMJ〉 (common eigenvec-
tors of the operators I2, J2, Iz and Jz) given in [1] or [14]
it is straightforward to verify the following relations

〈IJ(−MI)(−MJ)|Hh|IJ(−M ′
I)(−M ′

J)〉 =

〈IJMIMJ |Hh|IJM ′
IM

′
J〉 (9)

〈IJ(−MI)(−MJ)|Hm|IJ(−M ′
I)(−M ′

J )〉 =
[gj(−MJ) − ĝI(−MI)] µBBz · δ(−MI)(−M ′

I)δ(−MJ )(−M ′
J )

= − (gJMJ − ĝIMI)µBBzδMIM ′
I
δMJ M ′

J

= −〈IJMIMJ |Hm|IJM ′
IM

′
J〉. (10)

〈IJ(−MI)(−MJ)|He|IJ(−M ′
I)(−M ′

J)〉
= 〈IJMIMJ |He|IJM ′

IM
′
J〉. (11)

By noting that the two eigenvectors |IJMIMJ〉 and
|IJ(−MI) (−MJ)〉 always belong to different subsystems
(a result that is no longer valid for atoms with half odd
integer nuclear spin such as 23Na, 69Ga, 71Ga or 7Li) one
is led to identical matrix representations provided that the
magnetic field is reversed (which fact is designated by the
minus sign in front of B at the r.h.s of Eq. (12)):

εp
i (B, E) = εn

i (−B, E). (12)

Here the superscripts p and n denote the positive and the
negative subsystems, whereas the subscript i = 1, 2, ..., 6
labels the eigenvalues.

Hamiltonians containing a magnetic field are not
invariant under time reversal T . Each of the three
parts of the perturbation Hamiltonian is invariant under
Haake’s [19] unconventional time reversal described at the
end of Section 3.1. The eigenvectors belonging to the pos-
itive and the negative subsystem are also eigenvectors of
this operation and assume opposite signs.

4 Pure Zeeman and Stark splittings

4.1 Pure Zeeman effect

The magnetic field removes all natural degeneracies (see
Fig. 1). At first we investigate the positive subsystem.

Since eigenvectors belonging to different magnetic quan-
tum numbers MF are orthogonal, the matrix of the Hamil-
tonian Hh + Hm reduces to a 1×1 (MF = 5/2; F = 5/2),
a 2 × 2 (MF = −3/2; F = 5/2, 3/2), and a 3 × 3 subma-
trix (MF = 1/2; F = 5/2, 3/2, 1/2) [20]. Therefore, the
characteristic polynomial decomposes into 3 polynomials
of order 1, 2 and 3. The roots of the first two polynomials
are easily found:

ε =
1
4
(6a + b) − µBB

(
ĝI − 3

2
gJ

)
(13)

for MF = 5/2; F = 5/2 and

ε =
1
8

(
2a − 3b + 4µBB(ĝI − 2gJ) ∓

√
X

)

X = 25 (2a + b)2

+ 8µBB (ĝI + gJ) (2a + b + 2µBB(ĝI + gJ)) (14)

for MF = −3/2; F = 5/2, 3/2. Instead of the diagonal hy-
perfine structure constants Ak appearing in equation (2)
the traditionally used hyperfine structure constants a, b...
are employed:

A1 = IJa,

A2 =
1
4
b. (15)

Planck’s constant h in equation (15) is omitted since from
now on we choose to measure energies in MHz (see Tab. 1).

For the 3×3 submatrix we provide the matrices of the
hyperfine structure and the magnetic perturbation opera-
tors (ordering of basis states |FMF 〉 = |52 1

2 〉; | 32 1
2 〉; | 12 1

2 〉):

H
MF =1/2
h + HMF =1/2

m =
⎛

⎝
1
4 (6a + b) 0 0

0 −a− b 0
0 0 5

4 (−2a + b)

⎞

⎠ + µBB

×
⎛

⎝
1
10 (−2ĝI + 3gJ) − 3

5 (ĝI + gJ) 0
− 3

5 (ĝI + gJ) 1
30 (−4ĝI + 11gJ) − 1

3

√
5(ĝI + gJ)

0 − 1
3

√
5(ĝI + gJ) 1

6 (2ĝI + 5gJ)

⎞

⎠ .

(16)

The energy eigenvalues and corresponding eigenvectors
are labeled uniquely by F and MF for all field strengths
under consideration (|B| ≤ 1 mT). For small field
strengths, each eigenvector coincides approximately with
one of the corresponding basis vectors |IJFMF 〉. For
larger values of B the admixtures may be substantial or
dominating, but we can retain the labels assigned for small
magnetic field strengths. By calculating the overlaps of
eigenvectors belonging to slightly different B values, it is
possible to continue the labels also to higher B values,
even though, for large B values, the decoupled basis vec-
tors |IJMIMJ〉 match the real eigenvectors increasingly
better. These labels, too, are shown in Figure 1.

For some field values two curves cross at crossing
points labelled Bpn. There we have an accidental degener-
acy. These crossing points play an important role in level
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Fig. 1. Upper picture: split-
ting of the 2p 2P3/2 hyper-
fine energy levels εn of 6Li in
the positive subsystem due to
the Zeeman effect. The values
of the atomic parameters used
are given in Table 1 of the
paper. There are five crossing
points, which do not show a
Berry phase; their labels (Bp1,
. . . , Bp5) are located just be-
low each one in the line at
ε′n = −12 MHz. Lower pic-
ture: the same for the nega-
tive system with the crossing
points: (Bn1, . . . , Bn5).

crossings. The curves εp
i (B, E = 0) shown in Figure 1 obey

the J.v. Neumann-Wigner rule quoted in the Introduction:
curves belonging to the same value of F do not cross. In
view of the symmetry relation (12) the diagram for the
negative subsystem is obtained from that for the positive
subsystem by changing the signs of the magnetic field B
and of all the magnetic quantum numbers. Also the cross-
ing points Bnn are found in this way. Analytic expressions
for the corresponding field values and energies for all these
crossing points can be found, in principle. But the corre-
sponding expressions are too involved to be given here.
Numerical values for all the crossing points are given in
Table 2. Crossing points at B = 0 are disregarded.

The characteristic polynomials corresponding to equa-
tions (13–16) with an indeterminate ε are denoted as
cm1(ε), cm2(ε) and cm3(ε). Their product gives the charac-
teristic polynomial of the total matrix. Crossing points are

Table 2. Listing of crossing point data for the positive sub-
system in 6Li. The corresponding table for the negative sub-
system is obtained by the following changes: (1) the sign of
each magnetic field value must be reversed. (2) The sign of
each magnetic quantum number labelling the magnetic cross-
ing points Bpn must be reversed. (3) The labels of the electric
and the BE-crossing points, which show a Berry phase, must
be changed according to Figure 8.

Name B [mT] E [kV/cm] ε [MHz] (F, MF ) − (F ′, M ′
F )

Bp1 −0.10335 0.0 −0.26564 ( 3
2
, 1

2
) − ( 5

2
,− 3

2
)

Bp2 −0.04978 0.0 2.34180 ( 1
2
, 1

2
) − ( 3

2
,− 3

2
)

Bp3 0.06451 0.0 0.05000 ( 3
2
,− 3

2
) − ( 5

2
, 5

2
)

Bp4 0.12622 0.0 1.77922 ( 3
2
, 1

2
) − ( 5

2
, 5

2
)

Bp5 0.23458 0.0 −2.23480 ( 3
2
,− 3

2
) − ( 5

2
, 1

2
)

Ep1 0.0 ±51.390 −40.52359 ( 3
2
, 1

2
) − ( 3

2
,− 3

2
)

BEp −0.13029 ±127.430 −254.8313 ( 3
2
, 1

2
) − ( 3

2
,− 3

2
)
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obtained either from a double zero of such a polynomial or
from a common zero of two of these polynomials. The first
type of zeros is found by computing the resultant of cm2(ε)
(or cm3(ε)) and its derivative, which is denoted as rm22 (or
rm33). A zero common to cmj(ε) and cmk(ε) is found from
the resultant of these two polynomials denoted as rmjk.
All these resultants are polynomials in B; their zeros give
the field values of the wanted crossing points as long as
these values are real and in the range under consideration.
rm12 gives for the crossing points Bp3 and Bn3:

BBp3,Bn3 = ± (2ĝI − 3gJ) (2a + b)
2 µB (ĝI − 3gJ) (ĝI − gJ)

. (17)

Their common energy value is found by inserting the
above expression (with the positive sign) into (13):

εBp3,Bn3 =
1
4

[
6a + b − (2ĝI − 3gJ)2 (2a + b)

(ĝI − 3gJ) (ĝI − gJ)

]
. (18)

rm13 gives for the crossing points Bp4 and Bn4 the follow-
ing field value:

BBp4,Bn4 = ∓ 1
N4 µB

(
Z4 +

√
S4

)
. (19)

The corresponding energy is:

εBp4,Bn4 =
1

2N4

(
Y4 + (2ĝI − 3gJ)

√
S4

)
(20)

with the following abbreviations:

N4 = 8 ĝI (ĝI − gJ) gJ ;

Z4 = 4 a ĝ2
I + b ĝ2

I − 16 a ĝI gJ + 6 a gJ
2;

Y4 = 8 a ĝ3
I + 2 b ĝ3

I − 20 a ĝ2
I gJ + b ĝ2

I gJ + 36 a ĝI gJ
2

− 4 b ĝI gJ
2 − 18 a gJ

3;

S4 = (4 a + b)2 ĝ4
I − 16 b2 ĝ3

I gJ + 24 (2 a − b) b ĝI gJ
3

− 4
(
4 a2 + 17 a b − 10 b2

)
ĝ2

I gJ
2 + 36 a2 gJ

4 .

rm23 is B2 times a fourth order polynomial in B. The
latter yields the field values for the crossing points Bp1,
Bp2 and Bp5 as well as those of the corresponding cross-
ing points Bn1, Bn2 and Bn5. The values obtained by
inserting the values of the atomic parameters are given in
Table 2.

4.2 Pure Stark effect

At first we investigate the Stark effect for an electric field
aligned with the z-axis as quantization axis (note that in
the case of a pure Stark effect the energy shifts as func-
tions of E2 are independent of the field direction). The
effective electric Hamiltonian is composed of two terms
governed by the scalar and the tensorial polarizabilities
α0 and α2, respectively. The term containing α0 is pro-
portional to the identity operator; it does not determine

the field values at which crossings occur, since its influ-
ence on the energy levels is a global shift, quadratic in
E, towards lower energies, not influencing energy differ-
ences. Although the effect is much stronger in magnitude
than the effect caused by the term containing α2, it is
possible to diagonalize the Hamiltonian for zero α0 to get
the eigenvalues ε′n related to the ‘true’ energy corrections
εn by

ε′n = εn +
1
2
α0E

2. (21)

Using the eigenvalues ε′n instead of εn has the advantage
of a more comprehensive splitting diagram.

For the electric field aligned with the z-axis, the
matrix representing the sum of the hyperfine structure
and the effective electric perturbation operators Hh +
He can be reduced in the basis |IJFMF 〉) to a 1 × 1
(MF = 5/2; F = 5/2), a 2×2 (MF = −3/2; F = 5/2, 3/2)
and a 3×3 submatrix (MF = 1/2; F = 5/2, 3/2, 1/2). The
roots of the characteristic polynomials are

ε =
1
4
(6a + b) − 1

2
E2(α0 + α2) (22)

for MF = 5/2; F = 5/2 and

ε =
1
8

(
2a − 3b − 4α0E

2

∓
√

16α2
2E

4 + 8α2E2(2a + b) + 25(2a + b)2
)

(23)

for MF = −3/2; F = 5/2, 3/2. Again only the 3×3 subma-
trix of the effective electric perturbation operator (basis
states ordered as |FMF 〉 = | 52 1

2 〉; | 32 1
2 〉; | 12 1

2 〉) is presented
(since the same basis is used as in the case of the pure
Zeeman effect, the submatrix of the hyperfine structure
operator is the same as in Eq. (16)):

HMF =1/2
e =

E2

⎛

⎜
⎝

1
10 (−5α0 + 4α2) α2

5 − α2

2
√

5
α2
5

1
10 (−5α0 + α2) α2√

5

− α2

2
√

5
α2√

5
−α0

2

⎞

⎟
⎠ . (24)

Figure 2 shows this effect for the positive subsystem.
There is a crossing point in each system for positive
electric field; we call them Ep1 and En1. They result
from the intersection of two levels belonging to the
multiplet F = 3/2. This is at variance with the J.v.
Neumann-Wigner rules quoted near the end of the In-
troduction. The explanation is: this rule has been derived
under the presupposition that there are no more relations
between the matrix elements except that the matrix is
real symmetric. We surmise that this condition is vio-
lated on a curve passing through the points Ep1, En1
respectively. This will be the subject of a future inves-
tigation on the dynamical symmetry groups of this prob-
lem. These curves have been found in 23Na and discussed
by Heubrandtner [8]. In addition, a detailed investigation
showed that the two-level approximation applied in [18]
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Fig. 2. Upper curve: splitting of the
2p 2P3/2 hyperfine energy levels ε′n of 6Li
in the positive subsystem due to the Stark
effect. The term proportional to the scalar
polarizability α0 was put to zero before di-
agonalizing the perturbation matrix. The
values of the other atomic parameters are
given in Table 1 of the paper. The position
of the single electric crossing point Ep1 is
indicated. Lower curve: zoom on the two
levels crossing at Ep1.

and many textbooks on quantum mechanics for the dis-
cussion of avoided crossings fails in this case. Indeed any
approximation using less than 6 basis states is inadequate.
Since the level shifts are quadratic in E, there are corre-
sponding crossing points for negative electric field values.
Taking an electric field aligned with the x-axis and sepa-
rating the system of curves into the two aforementioned
subsystems shows that the latter have the same Stark ef-
fect (cf. again Eq. (11)). So we get the same curves as
in Figure 2. But the quantum numbers assigned to these
curves differ from those given in the figure.

The field value and energy of each of these electric
crossing points can be found in the same way as de-
scribed at the end of Section 4.1. Characteristic polyno-
mials ce1(ε), ce2(ε) and ce3(ε) are set up (the matrix given
in Eq. (24) must be augmented by the first one of Eq. (16)
for the computation of ce3(ε)) and the resultants rejk are
evaluated. The resultant re23 is proportional to E2 times
a linear polynomial in E2. This gives the field strength of

the single crossing point of both systems:

Ep1 = En1 = ±1
2

√−(2a − 3b)(4a− b)(2a + b)
√

2a(2a − b) α2

; (25)

the corresponding energy is

εEp1 = εEn1 =
1
8
(2a − 3b) − (2a + b)(20a2 − 12ab + 3b2)

16a(2a− b)

+
(2a − 3b)(4a− b)(2a + b)α0

16a(2a− b) α2
. (26)

5 Perpendicular Stark-Zeeman effect - energy
surfaces

By diagonalizing the sum of all three perturbation opera-
tors one obtains the energy eigenvalues ε′n as functions of
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Fig. 3. Energy surfaces in the positive subsystem of 6Li. The
magnetic crossing points Bp1, . . . , Bp3 are seen on the left.

the field values B and E. Drawing the eigenvalues ε′n as
functions of the field values B and E gives two systems
of 6 surfaces each. The quantities ε′n are the eigenvalues
of the operator Hh + Hm + He for α0 ≡ 0, which are re-
lated to the energy eigenvalues of the total Hamiltonian
(including α0) by equation (21). For the computation of
the eigenvalues the experimental values listed in Table 1
have been assigned to the atomic parameters, whereby
assuming these values to be as accurate as the computa-
tional precision used.

Figures 3–6 provide two different views of these sur-
faces for positive magnetic (and electric) field values and
for both subsystems. For negative values of B (i.e. for the
magnetic field direction reversed) the surfaces of one sys-
tem go over into those of the other for positive B; this cor-
responds to a time reversal, so the sign of MF changes, too.
For small but finite values of the magnetic field strength
and zero electric field, the quantum numbers F and MF

are good quantum numbers, therefore they distinctively
name the eigenvectors. Each eigenvector and the corre-
sponding energy eigenvalue, which gives one of the energy
surfaces, is paired over the whole area of the B, E-plane
under study. These pairs of quantum numbers label the

Fig. 4. Energy surfaces in the positive subsystem of 6Li. The
electric crossing point Ep1 is seen on the left side, the magnetic
crossing points Bp1, . . . , Bp3 on the right side.

surfaces in Figures 3 and 5. In general, the connectedness
of these energy surfaces is determined by the anticrossing
always occurring when both fields, B and E, are differ-
ent from zero and not parallel to each other [6,18]. Then
the ordering of the surfaces stays the same. This is an ad-
vantage in the numerical treatment since the labels can
be assigned just by ordering the eigenvalues according to
their values. The energy surfaces are smoothly connected
except for the section B = 0 or E = 0 and the cross-
ing points. If there is only one field present and if this
changes continuously, crossing occurs. This entails that
spikes protrude from one surface and intrude into one or
several other surfaces in the vertical planes E = 0 and
B = 0. This is visible more clearly in the colored versions
of Figures 3 to 6 (presented in the Electronic-only mate-
rial and at our website [30]) by the edges having colors
different from those of the surfaces they bound.
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Fig. 5. Energy surfaces in the negative subsystem of 6Li. The
magnetic crossing points Bn1 and Bn2 are seen on the left. The
arrow points to the crossing point BEn.

6 Crossing points

Crossing points are common points of two energy sur-
faces. These are the crossing points Bpn and Bnn found
in the pure Zeeman effect and the crossing points Ep1
and En1 found from the pure Stark effect. There are addi-
tional crossing points where both fields are different from
zero (called BE-crossing points). All crossing points in the
B, E−plane are shown in Figures 7 and 8. The fact that
these points of accidental degeneracy do definitely not ap-
pear along lines (in the (B, E)-plane) reinforces also in
this context the term crossing point.

Two different methods have been used to locate points
of accidental degeneracy. For the magnetic and elec-
tric crossing points, numerical root finding algorithms
have been used after sketching the energy variations
graphically. The application of similar methods to the
BE-crossing points did not produce satisfactory results
since the root finding methods often failed. These diffi-
culties result from the extremely slow approach of the two
biconical energy surfaces in the vicinity of these cross-
ing points. The most powerful method in this case was a
method using Berry phases developed by Heubrandtner:

Fig. 6. Energy surfaces in the negative subsystem of 6Li. The
magnetic crossing points Bn1 and Bn2 are clearly visible on
the right, the electric crossing point En1 on the left.

the evolution of the eigenvectors is followed using over-
lap calculations along closed curves enclosing those areas
to be checked for a crossing point within the plane of the
field parameters; the comparison of the transported eigen-
vectors to the original ones shows in some cases a change
in sign of some pairs of vectors. These changes can be in-
terpreted as the appearance of geometric phases (Berry
phases, which are treated in more detail in Sect. 8). Only
a real phase factor (= −1) turns up here, since all pertur-
bation matrices are real and symmetric. It was possible
to locate the crossing points with increasing accuracy by
shrinking the curves without loosing the change in sign.
This method, however, has its limits, as not all crossing
points show Berry phases.

The appearance of Berry phases (for certain crossing
points) is closely related to the form of the energy surfaces
in the neighborhood of these points [21]. Berry phases
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Fig. 7. Crossing diagram of the positive subsystem of 6Li. The
crossing points showing a Berry phase are marked by circles.
The labels (F, MF ) of the two crossing levels are given at the
corresponding crossing point.

Fig. 8. Crossing diagram of the negative subsystem of 6Li. The
crossing points showing a Berry phase are marked by circles.
The labels (F, MF ) of the two crossing levels are given at the
corresponding crossing point.

are observed only when the Taylor series expansion of the
function ε(B, E) developed around the field values of the
crossing point under study has terms linear in both B
and E. Then the energy surfaces appear to form a bicone
whose vertex is the crossing point. Figure 9 illustrates this
behavior for the crossing point Ep1. In the neighbourhood
of the magnetic crossing points the energy values of the
crossing levels depend on B and E2; therefore the energy
surfaces do not resemble to a bicone, even not to a conic
section. A field cycle around such a crossing point does not
lead to a Berry phase (cf. Fig. 10 for the crossing point
Bp1).

7 Adiabatic hyperfine level transfer

Adiabatic hyperfine level transfers similar to those de-
scribed in [5], explained in [7,8,13] and observed in [12]
occur in 6Li, too [14]. By performing adiabatic variations
of the external electric and magnetic fields, starting and

Fig. 9. Energy surface in the neighbourhood of the crossing
point Ep1, which shows a Berry phase. ε′n is linear in both B
and E. The resulting bicone is cut in half in the plane B = 0.

Fig. 10. Energy surfaces in the neighbourhood of the crossing
point Bp1, which does not show a Berry phase. ε′n is linear
in B and quadratic in E. The resulting surfaces are no longer
conic sections. They are cut along the plane B = BBp1 =
0.1033508 mT.
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Fig. 11. Upper picture: sample field cy-
cle of the electromagnetic field with the
corresponding splitting of the 2p 2P3/2

hyperfine levels of 6Li in the positive
subsystem. For lack of space, the mag-
netic quantum numbers are written in
the second interval; they are only valid
in the first interval, where there is only
a magnetic field present. The total an-
gular momentum numbers F as well
as the corresponding magnetic number
MF are assigned to the level and curve
by analytic continuation, i.e. accord-
ing to the overlap of the eigenvectors
found by in- or decrementing the field
values in sufficiently small steps. There
are crossings (anticrossings) within the
continuous (dashed) circles. Lower pic-
ture: the same for the negative system.

ending at zero field values, it is possible to achieve a level
transfer; i.e. the atom’s angular momentum and energy
may change while the atom traverses a sequence of crossed
partially overlapping static fields. In the atom’s proper
system the fields either vary linearly with time or stay
constant, as indicated in Figure 11 below the curves rep-
resenting the energy levels. In this context adiabaticity
means that the time intervals during which the field vari-
ations take place are large as compared to the times given
by the reciprocals of the Bohr frequencies involved. The
fact that the combination of pairs of crossing and anti-
crossing points is a prerequisite for observing adiabatic
hyperfine level transfer is confirmed once more.

This combination of crossings and anticrossings lead-
ing to a level transfer is best understood by looking at
an example where the field values and their increments
are such that the phase point traverses only one crossing
point, say Bn1, Figure 12, which is an enlarged section of
the system of energy surfaces shown in Figure 6. As long
as (from the atom’s point of view) E = 0 and B increases

from a value just below BBn1 to a value just beyond BBn1

(cf. Fig. 8), the phase point passes from the energy surface
(F, MF ) = (5/2, 3/2) through the crossing point to the
surface (3/2, −1/2). The ongoing electric field leads the
phase point on the latter surface away from the (vertical)
plane E = 0 into domains where both fields are nonzero.
When B decreases towards its initial value the phase point
now finds a gap separating the two surfaces. It therefore
cannot return to the original energy surface and quantum
numbers. The same game is played for cycles with higher
magnetic field strength, with the difference that the phase
point may traverse several crossing points. Thus all level
transfers are completely understood as soon as the system
of energy surfaces with all crossing points is known. Sim-
ilar considerations apply to the electric crossing points.

The preceding description by the motion of the phase
point on energy surfaces is still too “classical”. From
the quantum mechanical point of view transition prob-
abilities for adiabatic changes of the external fields must
be considered. This has been started in [8] and studied
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Fig. 12. View of the magnetic crossing point Bn1. The
black rectangle at the bottom shows the cycle of fields in the
(B, E)-plane. The black curve gives the corresponding phase
curve of the atom on the two parts of the energy surfaces.
It starts at B = 0.093 mT, E = 0 in the surface labelled
(F = 5/2; MF = 3/2) and ends at the point B = 0.093 mT,
E = 0 on the upper surface with labels (F = 3/2; MF = −1/2).

extensively by Pfleger [21] for 23Na. We believe that their
results can be taken over for the other elements and also
for 6Li. Roughly speaking, the crossing points can be di-
vided into two classes. The first one contains those points,
in whose neighbourhood the energy functions ε′n(B, E)
of the levels concerned are linear in both B and E,
and this neighbourhood has the shape of a bicone (see
Figs. 9, 12); all the electric crossing points of 6Li and all
the BE-crossing points belong to this class. Simultane-
ous changes of both external fields correspond to trajec-
tories in the (B, E)-plane. For such trajectories passing
through a crossing point of this kind the crossing proba-
bilities are nearly the same, independent of the direction
of the trajectory. On the contrary, for most of the mag-
netic crossing points, which make up the second class, the
crossing probabilities depend strongly on the direction of
the trajectory: on the one hand they are nearly unity for
trajectories traversing the crossing point in the magnetic
direction, i.e. if B increases (or decreases) while E = 0; on
the other hand the crossing probability is very small if the
trajectory traverses the crossing point along the electric
field direction, i.e. if B = BBpn or B = BBnn while E
changes from negative to positive values or vice versa. In

23Na this picture shows some individual variations so that
the true situation is less clear-cut than the description just
given.

8 Berry phases

If at least two external parameters of a system (in our case
the magnetic field B and the electric field E) adiabatically
pass through a closed cycle (so that at the end they have
the same values as at the beginning), the wave function
may not have the same value at the end which it had at the
start, though the quantum numbers and energy may be
the same. This change of the wave function is a phase eiγ ,
where, in general, γ may assume any value. This geometric
or Berry phase and its occurrence in different physical
systems is reviewed in [22], in which Berry’s papers are
also contained. An introduction into the subject is given
in [23] or [24].

Herzberg and Longuet-Higgins [25] dealt with energy
surfaces in polyatomic molecules already before Berry, and
investigated the sign of the wavefunction in a two-level
model. In this case the Hamiltonian may be represented
as a real symmetric matrix with real eigenvectors. An
eigenvector changes its sign if the two external parameters
(there the relative positions of the nuclei) pass through a
closed cycle around a crossing point of the energy sur-
faces. Heubrandtner detected that the same applies to the
Stark-Zeeman effect for crossed fields. The theory of [25]
may be adapted to a two-level approximation of the sys-
tems considered here. In a corresponding adiabatic treat-
ment of an isolated diatomic molecule there is only one
external parameter. If such a molecule is located in a ho-
mogeneous magnetic field, then this system depends on
two more external parameters, namely the field strength
and the axis between the molecular and the field axis. For
constant magnetic field the energy surfaces have biconical
crossing points [26].

Here this phase change does not occur for each crossing
point. In fact, only the eigenvectors of those levels change
sign, whose energy surfaces meet at an electric or a BE
crossing point, for trajectories passing around it. These
crossing points (marked by circles in Figs. 7 and 8) are
exactly those points, in whose neighbourhood the energy
functions ε′n(B, E) of the levels concerned are linear in
both B and E, so that the energy surfaces are connected
in a bicone.

This change in sign has also been established by nu-
merical investigations of the positive and the negative sys-
tem. The program developed to perform the “analytic con-
tinuation” of the eigenvectors for changing external fields
was modified: after it has found the related eigenvectors
by evaluating the overlap, it ensures that the largest com-
ponents of two related eigenvectors have the same sign.
So it was possible to check the phase of all eigenvectors
while the external fields B and E pass through a closed
cycle. The corresponding trajectory is a rectangle in the
(B, E)-plane. This program was again extended so that
it used this property to locate unknown crossing points
(see 2nd paragraph of Sect. 6). It remains still a challenge
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to devise an experiment capable of detecting this phase
change directly.

9 Conclusions

The splitting behaviour of the 2p 2P3/2 hyperfine struc-
ture levels in 6Li for homogeneous crossed electric (E)
and magnetic fields (B) has been investigated by analyti-
cal and numerical methods and the structure of the energy
surfaces (i.e. frequency shifts) has been obtained from the
eigenvalues εF,MF (B, E) inside the domain |B| < 1 mT,
0 < E < 300 kV/cm of the (B, E)-plane. For these field
values the hyperfine, the Stark and the Zeeman interac-
tions are of about the same strength. It has been found
that:

1. if the two fields are perpendicular, the system of lev-
els decomposes into two non-interacting subsystems
due to the remaining symmetry under reflection at a
plane perpendicular to the magnetic field direction and
parallel to the electric field direction. One subsystem
changes into the other one under time reversal;

2. there are 7 crossing points in each subsystem; 5 with
B �= 0 and E = 0 (magnetic crossing points); 1 with
E �= 0 and B = 0 (electric crossing point); 1 with
E �= 0 and B �= 0 (BE-crossing point);

3. the structure of the energy surfaces gives complete in-
sight into the level transfer behaviour of the system;

4. Berry phases with a value ±π occur for field cycles
enclosing a crossing point with linear field dependence
(here the electric and BE-crossing points).

The researches presented were stimulated by experimental in-
vestigations performed in the group of L. Windholz. He pro-
vided the impetus and the experimental data, without which
these investigations would not have been possible. The au-
thors also profited from the original, clarifying results and pro-
grams of Th. Heubrandtner, which he shared generously. B.S. is
obliged to B. Thaller for helpful remarks in the initial phase of
this line of research. Thanks go to the anonymous referee(s) for
hinting to important references and suggesting improvements.
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